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Model Parameter Extraction for Si Micro-Ring Modulators

Byung-Min Yu', Jeong-Min Lee', Yoojin Ban', Seong-Ho Cho’, and Woo-Young Choi'
'Department of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea
’High Performance Device Group, Samsung Advanced Institute of Technology, Yongin, Gyeonggi-do, 446-712, Korea

Paper Summary
Numerical values for three key model parameters that
describe the transmission characteristics of Si micro-
ring modulators are extracted from measurement resullts.
Their dependence on bias voltages is determined and
their accuracy is compared with simulation results.

Introduction
Optical interconnects can offer many advantages over
conventional electrical interconnects such as much

higher data rates, EMI insensitivity, and smaller sizes [1].

Si photonics is a promising technology for realizing
optical interconnects since Si technology provides
potential for low-cost manufacturability of photonic
devices and easy integration with Si electronics [2]. In
particular, Si micro-ring modulators (Si MRMs) have
small footprints and low driving voltages and,
consequently, are actively investigated as one of the key
devices for realizing Si-photonic optical interconnects
[3]. Very high-speed Si MRMs with relatively low
driving voltages have been demonstrated [4, 5].

In order to establish Si MRM technology based on
foundry services, it is essential that accurate and
convenient-to-use Si MRM models are established and
the numerical values for the parameters used in those
models are extracted from fabricated devices. In this
paper, we demonstrate the model parameter extraction
process for the Si MRM.

Structure of Si MRMs

a)

P;
Fig. 1. a) Structure of Si MRM b) Chip photograph of Si
MRM

Fig. 1 shows the structure of the Si MRM and the chip
photograph of the Si MRM used in our investigation.
The device is fabricated by IME Si-photonics foundry
service through OpSIS [6] and implemented with 0.5-pum
wide, 0.22-um thick Si waveguides on 2-um thick buried
oxide layer. The Si MRM is composed of a ring
resonator surrounded by the PN junction and a
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Fig. 2 Measured transmission characteristic of ring modulator
(radius = 8 um, coupling gap = 0.3 pm, bias voltage =0 V)

directional coupler. The ring radius is 8 um and the
coupling gap is 0.3 pm.

Light injected into the device has the wavelength-
dependent transmission characteristics. Fig. 2 shows the
measured transmission characteristics for the Si MRM
under investigation. For the measurement, light goes into
and comes out of the device through fiber probes and
grating couplers. The power of injected light is
minimized so that Si MRM self-heating does not occur
[7]. With reverse voltages applied across the p-n junction
surrounding the ring resonator, the effective group index
of the ring resonator waveguide can be modulated due to
the change in the depletion width resulting in shifted
resonance wavelength, which modulates the intensity of
the injected light.

Parameter Extraction
The Si MRM transmission characteristic can be
described with the following equation [8]:

B a’ +y* =2aycos(2zn,, L/ Z) O
P 1+(ay)’ —2ay cos(2zn,, L/ 2)

In the above equation, a represents the ratio of the
optical power in the ring after one round-trip to the
power before the round-trip. y represents the through
coefficient for the directional coupler. With «x, the
direction coupler coupling coefficient, y°+ «”= 1. eyis
the effective group index of the ring waveguide. L is the
circumference of the ring having the value of 50.26 pm
for the device under investigation and 1 is the
wavelength of input light.

Our task is determining the numerical values of 7,
a, and y from measured transmission characteristics. n.5
can be easily determined from the resonance condition,
ReyrL = mA,.,, where m is an integer. For our Si MRM, n.4
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directional coupler. The ring radius is 8 um and the
coupling gap is 0.3 pm.

Light injected into the device has the wavelength-
dependent transmission characteristics. Fig. 2 shows the
measured transmission characteristics for the Si MRM
under investigation. For the measurement, light goes into
and comes out of the device through fiber probes and
grating couplers. The power of injected light is
minimized so that Si MRM self-heating does not occur
[7]. With reverse voltages applied across the p-n junction
surrounding the ring resonator, the effective group index
of the ring resonator waveguide can be modulated due to
the change in the depletion width resulting in shifted
resonance wavelength, which modulates the intensity of
the injected light.

Parameter Extraction
The Si MRM transmission characteristic can be
described with the following equation [8]:

B a’ +y* =2aycos(2zn,, L/ Z) O
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In the above equation, o represents the ratio of the
optical power in the ring after one round-trip to the
power before the round-trip. y represents the through
coefficient for the directional coupler. With x, the
direction coupler coupling coefficient, y*+ «”= 1. Reyls
the effective group index of the ring waveguide. L is the
circumference of the ring having the value of 50.26 pm
for the device under investigation and 1 is the
wavelength of input light.

Our task is determining the numerical values of 7
a, and y from measured transmission characteristics. nq5
can be easily determined from the resonance condition,
HeyL = mi,.s, where m is an integer. For our Si MRM, ny
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Fig. 3. RMSE dependence on o and y

= 3.82659 when the reverse bias voltage is 0V. The
numerical values for @ and y can be simultaneously
extracted by fitting the measured data into Eq. 1 with the
minimum mean squared error (MMSE) technique. Fig. 3
shows the resulting root mean squared error (RMSE) for
different values of a and y. As can be seen in the figure,
there are two pairs of a and y, (a = 0.9688, y = 0.973)
and (a = 0.973, y = 0.9688) that produce the minimum
RMSE. This is because interchanging o and y in Eq. 1
produces the same result. The correct pair should be
determined by performing additional measurement.

In MRMs, the transmitted power at the resonance
wavelength becomes zero for critical coupling, which
occurs when o = y. With the reverse bias applied, the
depletion width increases and the light guided in the ring
waveguide experiences less carriers, which increases a.
However, y does not change with the reverse bias since
the directional coupler does not have any PN junction
around it. Consequently, if a < y for a given MRM,
applying a reverse bias will produce less transmitted
power at the resonance wavelength as it approaches
critical coupling with increased a, but if a > y, the
transmitted power at the resonance will be larger with a
reverse bias [8]. The circles in Fig. 4 show measured
transmission characteristics at three different biases. As
can be seen, the transmitted power at the resonance
decreases with the reverse bias indicating o < y for our Si
MRM. From this, we can choose the correct pair of (a =
0.9688, y = 0.973) for the Si MRM with OV bias. The

0

S5k o

—ov
20} VA

—2V

Output powr [dB]
&

-25 s N s N
1550.2 1550.4 1550.6

Wavelength [um]
Fig. 4. Measured and fitted transmission characteristics

Bias voltage o y Hegy
ov 0.9688 0.973 3.82659
-1V 0.9692 0.973 3.82664
-2V 0.9695 0.973 3.82669

Table 1. Extracted o and y values
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Fig. 5. Extracted y from measurement and simulation

red line in Fig. 4 shows the calculated result from Eq. 1
with extracted parameter values. Similar process can be
applied for the cases of —1 and —2 V biases and the
results are shown in Fig. 4 and Table 1.

Comparison with Simulation

In order to check the accuracy of the extracted values,
we experimentally extract y values from five different Si
MRMs having different couple gap values ranging from
0.26 um to 0.34 um and compare them with y values
determined from numerical simulation. For the
simulation, Lumerical MODE Solution is used for the
directional waveguides having the identical structure as
in measured Si MRMs. Fig. 5 shows extracted and
simulated y values for different gap values. They agree
well within about 0.2%. The slight difference is believed
due to the fact that the fabricated waveguides do not
have vertical sidewalls [9], which cause more coupling
than vertical-sidewall waveguides used in simulation,
resulting in less y values.

Conclusions
We demonstrated the values for the key model
parameters can be extracted from measured Si MRM
transmission characteristics. We also compared the
extracted values with simulation results.
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